0960-894X/95 \$9.50+0.00

0960-894X(95)00477-7

4,5-DIHYDRO-4-OXO-3*H*-IMIDAZO[4,5-c]PYRIDINES: POTENT ARYLACETIC ACID-DERIVED AT₁ ANTAGONISTS WITH IMPROVED AFFINITY FOR THE AT₂ RECEPTOR

Werner W. K. R. Mederski, * Dieter Dorsch, Mathias Osswald, Norbert Beier, Ingeborg Lues, Klaus-Otto Minck, Pierre Schelling and Bernhard J. Ladstetter#

Merck KGaA, Preclinical Pharmaceutical Research, 64271 Darmstadt, and Institute of Pharmacokinetics and Metabolism, #85567 Grafing, Germany

Abstract. The replacement of dimethylacetamide with arylacetic acid esters and acetamides at the imidazo[4,5-c]pyridine 5-position of EMD 66684 2 imparts affinity for the AT_2 receptor. The highest affinity was found with the phenylacetic acid isopropylester moiety, which led to compound 7c with an IC_{50} value of 32 nM (AT_2) and an AT_2/AT_1 ratio of 5

Introduction:

In recent years the development of angiotensin (ang) II receptor antagonists has become the main pharmacological approach to the regulation of the renin-angiotensin system. Losartan 1, the most advanced ang II antagonist for the treatment of hypertension, and many others mediate their effects by blocking the ang II AT1 receptor subtype. In our group, 1,2-dihydropyridin-2-ones,2 (6-oxo-3-pyrazinyl)-benzimidazoles,3 4,5-dihydro-3*H*-imidazo[4,5-c]pyridin-4-ones,⁴ 7-ethyl-1,2-dihydroquinolin-2-ones⁵ and 1,2,3,4-tetrahydropyrimidin-2,4-diones⁶ have been studied as selective AT₁ antagonists. With the discovery of the non-peptide ligand PD 123,177 the AT₂ receptor subtype has been identified in various tissues. The physiological role of this receptor has not yet been clearly defined, but recent studies have indicated that it may play a role in wound healing, cardiac remodelling and cerebral blood flow 8 Besides increased activation of the AT2 receptor, associated with losartan-induced hyperreninaemia, 9 could have undesirable effects. Thus, it seemed reasonable to develop compounds which would bind to both ang II subtypes. Recently some compounds with affinity for both the AT₁ and AT₂ receptors have been described ¹⁰ We previously reported the identification of EMD 66684 2 as a potent antagonist of the AT₁ receptor ⁴ During further studies of the SAR of 2 we discovered structural modifications that enhanced the binding affinity of the imidazo[4,5-c]pyridine class of antagonists to the AT2 receptor. Our main objective was to discover ang II antagonists with AT₁ potency < 10 nM and an AT₂/AT₁ ratio ~1. In this article, we report the synthesis of arylacetic acid derivatives as potent AT1 receptor antagonists with improved affinity for the AT2 receptor

Chemistry:

The synthesis of the various imidazo[4,5-c]pyridone-based antagonists bearing an arylacetic acid-derived moiety at the 5-position of the heterocycle is outlined in Scheme I. The parent biphenyl derivatives 4, 5 and 6 were prepared using 2-alkyl imidazo[4,5-c]pyridones 3⁴ as starting materials.

Scheme I

Reagents: a. K₂CO₃, 4'-(bromomethyl)biphenyl-2-carbonitrile, DMF, rt; b. KOtBu, ArCHBrCOR₁, DMF, rt, c. Me₃SnN₃, toluene, reflux; then silica gel chromatography; d. NH₂OH·HCl, NEt₃, DMSO, 75°C; e CDI, THF, reflux; f. KOtBu, PhCHBrCO₂iPr, DMF, rt; g. K₂CO₃, 4-bromomethyl-2'-tert-butylamino-sulphonyl[1,1']biphenyl, DMF, rt; h. TFA, rt; i. ClCO₂nBu, DMAP, pyridine, rt.

For the synthesis of biphenyltetrazole compounds 7, imidazo[4,5-c]pyridones 3 were treated with potassium carbonate and 4'-(bromomethyl)biphenyl-2-carbonitrile 11 leading to the desired 3*H*-coupled products 4 in moderate yields. Reaction of the anions of 4 with α -bromoarylacetates or amides 12 afforded the N-5 alkylated intermediates which were transformed into the final tetrazoles 7 using trimethyltin azide in refluxing toluene and subsequent silica gel chromatography of the crude tin adducts.

In addition to the variation of the N-5 position of the imidazo[4,5-c]pyridine heterocycle, we investigated various modifications of the tetrazole moiety, which led to non-tetrazole ang II antagonists.

The 1,2,4-oxadiazol-5-one group as a bioisoster of the tetrazole moiety 13 was introduced starting with biphenyl nitrile 4 (R = Bu). Addition of hydroxylamine to nitrile 4 afforded the corresponding amidoxime, which was immediately cyclised with 1,1'-carbonyldiimidazole to give oxadiazole 5. The dianion of 5 was formed with two equivalents of potassium *tert*-butoxide and selectively alkylated at the N-5 position with isopropyl α -bromophenylacetate to provide the desired product 8 in modest yield.

Acylsulphonamides are well-known as bioisosters of the tetrazole unit in ang II receptor antagonists. ¹⁴ Again, imidazo[4,5-c]pyridine 3 (R = Bu) served as the starting material for the synthesis of acylsulphonamide 9. The *tert*-butyl protected sulphonamide 6 was prepared in reasonable yield from 3 on treatment with potassium carbonate and 4-bromomethyl-2'-tert-butylamino-sulphonyl[1,1']biphenyl in dimethylformamide. Replacement of the N-5 hydrogen with isopropyl phenylacetate was accomplished by reacting intermediate 6 with potassium *tert*-butoxide and the corresponding electrophile. Removal of the N-tert-butyl group in the subsequent product with trifluoroacetic acid and acylation of the resultant primary sulphonamide with butyl chloroformate furnished the final compound 9 in good overall yield.

Biological results and discussion:

The biological data of the target compounds are outlined in Table 1. These compounds were tested for their *in vitro* binding affinity to angiotensin II AT₁ receptors in a rat adrenal cortex preparation¹⁵ or AT₂ receptors in rat adrenal medulla. ¹⁶ The results for losartan 1 and EMD 66684 2 are given in order to provide direct comparison with those of the compounds reported here.

The introduction of a methyl phenylacetate in the N-5 position of the 4,5-dihydro-3*H*-imidazo[4,5-c]pyridin-4-one resulted in the discovery of the first compound in this series (7a) with a modest affinity for the AT₂ receptor. However, the ester functionality is required for AT₂ activity since the corresponding acid (7b) showed markedly less AT₂ affinity. At the outset of our further studies, we introduced more lipophilic alkoxy substituents (R₂ in Table I) into the parent compound 7a. These modifications led to ester derivatives (7c-7f) with increased affinities for the AT₂ receptor from which the isopropyl acetate 7c showed an 8-fold improvement compared with the methyl acetate 7a. Substitution of the various positions of the phenyl ring (Ar in Table I) in the optimised isopropyl ester 7c had a negative effect on the AT₂ - as well as the AT₁ binding (7k-7m). Other aryl and heteroaryl substituents not shown in Table I had a similar effect on binding behaviour. Keeping the isopropyl phenylacetate moiety constant, the effect of the R substituent was also examined in this series. Comparison of compounds 7g, 7c, 7h and 7i differing in the lengths of the aliphatic sidechains at the C-2 position indicated that alkyl groups shorter than butyl enhanced AT₁ affinity while a maximum of AT₂ affinity was observed with the butyl chain. Replacement of the alkoxy substituents by various alkyl groups (R₂ in Table I)

Table 1: In Vitro Binding Data of 3-(4-biphenylylmethyl)-4,5-dihydro-4-oxo-3H-imidazo[4,5-c]pyridines

		, 	,	r,			
Compound	R	R ₁	R ₂	Ar	Binding[AT ₁], IC ₅₀ (nM) ¹⁵	Binding[AT ₂], IC ₅₀ (nM) ¹⁶	AT ₂ /AT ₁
7a	Bu	CN ₄ H ^a	OMe	Ph	4.0	250	63
7b	Bu	CN₄H	ОН	Ph	28	17,000	607
7c	Bu	CN ₄ H	O <i>i</i> P r	Ph	6.5	32	5
7 d	Bu	$CN_{\Delta}H$	OcycloPn b	Ph	8.8	120	14
7 e	Bu	CN ₄ H	OPn	Ph	14	150	11
7 f	Bu	CN₄H	OCH ₂ iPr	Ph	6.5	95	15
7 g	Pn	CN ₄ H	O <i>i</i> Pr	Ph	7.1	47	7
7h	Pr	CN ₄ H	O <i>i</i> Pr	Ph	3.1	58	19
7i	Et	CN ₄ H	O <i>i</i> Pr	Ph	3.1	150	48
7k	Bu	CN₄H	O <i>i</i> Pr	Ph(o-Cl)	11	570	52
7 I	Bu	CN ₄ H	OiPr	Ph(m-Cl)	11	360	33
7m	Bu	CN ₄ H	O <i>i</i> Pr	Ph(p-Cl)	9	165	18
7 n	Bu	CN ₄ H	Me	Ph	4.1	320	78
7 0	Bu	CN ₄ H	Ph	Ph	8	330	41
7 p	Bu	CN ₄ H	tBu	Ph	6.6	300	46
7 q	Bu	CN ₄ H	NH2	Ph	3	950	317
7r	Bu	CN ₄ H	NMe2	Ph	3.6	125	35
7s	Bu	CN ₄ H	NEt2	Ph	4.2	58	14
7t	Bu	CN ₄ H	NHiPr	Ph	5.6	300	54
7 u	Bu	CN ₄ H	morpholinyl	Ph	2.9	70	24
7v	Bu	CN ₄ H	pyrrolidinyl	Ph	3.7	100	27
7 w	Bu	CN ₄ H	piperidinyl	Ph	4.4	220	50
7x	Bu	CN ₄ H	NMePh	Ph	19	150	8
8	Bu	$C_2N_2O_2H^c$	OiPr	Ph	11	140	13
9	Bu	SO ₂ NHCO ₂ Bu	O <i>i</i> Pr	Ph	21	430	20
1					8.2	>10,000	>1220
2					0.7	>10,000	>14286

a $CN_4H = 1H$ -tetrazole-5-yl, Pn =pentyl, C $C_2N_2O_2H = 5$ -oxo-4,5-dihydro-1,2,4-oxadiazole-3-yl

resulted in weaker AT₂ binding derivatives (7n-7p) In this case a ten-fold loss of AT₂ binding affinity was observed compared with 7c. In the search for more stable ester derivatives, phenyl acetamides were introduced in the N-5 position (R₂ in Table I). A variety of amides were synthesised starting from the unsubstituted compound 7q to the more sterically demanded methylphenyl analogue 7x. In general, these amides had a higher potency for the AT₁ receptor except for the bulky methylphenyl analogue 7x. Hydrogen atoms at the amide position were unfavourable for the AT₂ binding. This was observed with 7q and to some extent with 7t. The diethylacetamide substituent, employed successfully in the AT₁-selective 4,5-dihydro-3*H*-imidazo[4,5-c]pyridin-4-one antagonist series,⁴ was similar in the AT₂ binding affinity but showed a two-fold increase in AT₁ potency relative to compound 7c. This is also true for the morpholino derivative 7u. Recognizing that the isopropyl phenylacetate moiety had a remarkable effect on the AT₂ affinity, the bioisosteric oxadiazole 8 and acylsulphonamide 9 were examined as tetrazole replacements in 7c (R₁ in Table I). Both compounds showed a modest decrease in AT₂ affinity together with a small loss in AT₁ potency.

In conclusion, it has been shown that angiotensin II antagonists with AT₁ potencies that are equal or superior to losartan and with significant affinity for the AT₂ site can be derived from the 4,5-dihydro-3*H*-imidazo[4,5-c]pyridin-4-one nucleus. Optimum affinity was observed with isopropyl phenylacetate at N-5 and a butyl chain at C-2. This compound, 7c, exibited an AT₂/AT₁ ratio of 5 along with a nanomolar affinity for the AT₁ receptor. The AT₂ value of 7c (32 nM) is in the range of the selective AT₂ compound PD 123,177 (30 nM).

The most potent AT₂ binding compound 7c was tested for functional AT₁ antagonism *in vitro* in isolated rabbit aortic rings precontracted by ang II¹ and evaluated *in vivo* for inhibition of ang II induced increase in diastolic blood pressure in pithed rats. ¹⁷ The functional potency of 7c is in the nanomolar range (IC₅₀ = 2.0 nM) and the *in vivo* inhibition in the pithed rat modell is excellent (95 % at 3mg/kg, 2h).

Orientating studies of the pharmacokinetics were carried out in order to examine the stability of the isopropyl ester 7c in vivo. Preliminary in vitro studies with 7c in rat plasma at 37°C showed that only 39% of the parent compound could be detected after 4 hours by means of HPLC. After a single i.v. and p.o. administration of 7c (1 mg/kg and 10 mg/kg, respectively) in rats concentrations were determined for 7c as well as for the corresponding acid 7b (using an HPLC method). Although the bioavailability of the ester was determined with about 60% the acid 7b was observed in each plasma sample in substantial amounts. 5 minutes after i.v. injection the plasma concentrations of 7c and 7b were already similar to each other (measured in ng/ml).

Because of this negative outcome and the need for lower AT₂/AT₁ IC₅₀ ratios, other approaches to the incorporation of AT₂ affinity in non-peptide ang II antagonists were pursued.

Acknowledgement.

We would like to thank Gabriele Czmok, Herbert Glas, Michael Gruber, Annette Herberz, Erwin Labitzke, Hans-Jörg Müller, Karin Rauschenbach-Ruess and Angela Rittersberger for preparing the compounds mentioned in this communication and Nathalie Amirzadeh-Asl, Ina Beranek, Maria Christadler, Michael Kaiser and Björn Schneider for determining the biological data.

References and notes:

Wong, P. C.; Hart, S. D.; Zaspel, A. M.; Chiu, A. T.; Ardecky, R. J.; Smith, R. D.; Timmermans, P. B. M. W. M. J. Pharmacol. Exp. Ther. 1990, 255, 584

- (a) Osswald, M.; Mederski, W. W. K. R.; Schwarz, M.; Beier, N.; Lues, I.; Minck, K.-O. Bioorg. Med. Chem. Lett. 1994, 4, 683.
 (b) Koppe, T.; Mederski, W. W. K. R.; Osswald, M.; Schwarz, M. Tetrahedron Lett. 1995, 36, 377.
- Dorsch, D.; Mederski, W. W. K. R.; Beier, N.; Lues, I.; Minck, K.-O.; Schelling, P. Bioorg. Med. Chem. Lett. 1994, 4, 1297.
- Mederski, W. W. K. R.; Dorsch, D.; Bokel, H.-H.; Beier, N.; Lues, I.; Schelling, P. J. Med. Chem. 1994, 37, 1632.
- Beier, N.; Labitzke, E.; Mederski, W. W. K. R.; Radunz, H.-E.; Rauschenbach-Ruess, K.; Schneider, B. Heterocycles 1994, 39, 117.
- 6. Dorsch, D., Mederski, W. W. K. R.; Osswald, M.; Beier, N.; Schelling, P. Bioorg. Med. Chem. Lett. 1995, in press.
- Blankley, C. J.; Hodges, J. C.; Klutchko, S. R.; Himmelsbach, R. J.; Chucholowski, A.; Conolly, C. J.; Neergard, S. J.; Van Nieuwenhze, M. S.; Sebastian, A.; Quin III, J.; Essenburg, A. D.; Cohen, D. M. J. Chem. 1991, 34, 3248.
- 8. For references, see Timmermans, P. B. M. W. M.; Wong, P. C.; Chiu, A. T.; Herblin, W. F.; Benfield, P.; Carini, D. J.; Lee, R. J.; Wexler, R. R.; Saye, J. M.; Smith, R. D. *Pharmacol. Reviews* 1993, 45, 205.
- 9. Christen, Y.; Waeber, B.; Nussberger, J.; Porchet, M.; Lee, R. J.; Timmermans, P. B. M. W. M., Brunner, H. R.; Borland, R. M. Circulation 1991, 83, 1333.
- For other papers disclosing compounds which bind to both the AT₁ and AT₂ receptors, see: (a) Walsh, T. F.; Fitch, K. J.; Chang, R. S. L.; Faust, K. A.; Chen, T.-B.; Kivlighn, S. D.; Zingaro, G. J.; Lotti, V. J.; Siegl, P. K. S.; Patchett, A. A.; Greenlee, W. J. Bioorg. Med. Chem. Lett. 1995, 5, 1151. (b) Quan, M. L.; Chiu, A. T.; Ellis, C. D.; Wong, P. C.; Wexler, R. R.; Timmermans, P. B. M. W. M. J. Med. Chem. 1995, 38, 2938 and references cited therein.
- Carini, D. J.; Duncia, J. V.; Aldrich, P. E.; Chiu, A. T.; Johnson, A. L.; Pierce, M. E.; Price, W. A.; Santella III, J. B.; Wells, G. J.; Wexler, R. R.; Wong, P. C.; Yoo, S.-E.; Timmermans, P. B. M. W. M. J. Med. Chem. 1991, 34, 2525.
- For the general synthesis of α-bromoarylacetates and amides, see (a) Truit, T.; Mark, D.; Long, L. M.;
 Jeanes, J. J. Am. Chem. Soc. 1948, 70, 4214. (b) Gleason, J. G.; Harpp, D. N. Tetrahedron. Lett. 1970, 39, 3431.
- 13. For comparison, see Ferrari, B., Taillades, J., Perreaut, P., Bernhart, C., Gougat, J., Guiraudou, P., Cazaubon, C., Roccon, A., Nisato, D., Le Fur, G., Brelière, J. C. Bioorg. Med. Chem. Lett. 1994, 4, 45.
- 14. For other acylsulphonamides as ang II antagonists, see (a) Mantlo, N. B.; Kim, D.; Ondeyka, D.; Chang, R. S. L.; Kivlighn, S. D.; Siegl, P. K. S.; Greenlee, W. J. Bioorg. Med. Chem. Lett. 1994, 4, 17. (b) Glinka, T. W.; de Laszlo, S. E.; Siegl, P. K. S.; Chang, R. S.; Kivlighn, S. D.; Schorn, T. S.; Faust, K. A.; Chen, T.-S.; Zingaro, G. J.; Lotti, V. J.; Greenlee, W. J. Bioorg. Med. Chem. Lett. 1994, 4, 81. (c) Santella III, J. B.; Duncia, J. V.; Ensinger, C. L.; VanAtten, M. K.; Carini, D. J.; Wexler, R. R.; Chiu, A. T.; Wong, P. C.; Timmermans, P. B. M. W. M. Bioorg. Med. Chem. Lett. 1994, 4, 2235. (d) Chang, L. L.; Ashton, W. T.; Flanagan, K. L.; Chen, T.-S.; O'Malley, S. S.; Zingaro, G. J.; Siegl, P. K. S.; Kivlighn, S. D.; Lotti, V. J.; Chang, R. S. L.; Greenlee, W. J. J. Med. Chem. 1994, 37, 4464.
- Chiu, A. T.; Carini, D. J.; Johnson, A. L.; McCall, D. E.; Price, W. A.; Thoden, M. J. M. C.; Wong, P. C.;
 Taber, R. I.; Timmermans, P. B. M. W. M. Eur. J. Pharmacol. 1988, 157, 13.
- Chiu, A. T.; Herblin, W. F.; McCall, D. E.; Ardecky, R. J.; Carini, D. J.; Duncia, J. V.; Pease, L. J.; Wong, P. C.; Wexler, R. R.; Johnson, A. L.; Timmermans, P. B. M. W. M. Biochem. Biophys. Res. Commun. 1989, 165, 196.
- Wong, P. C.; Price, W. A.; Duncia, J. V.; Carini, D. J.; Wexler, R. R.; Johnson, A. L.; Timmermans, P. B. M. W. M. J. Pharmacol. Exp. Ther. 1990, 252, 790